
> 5
INTEGRAL EQUATION SOLUTIONS TO RADIATION

AND SCATTERING PROBLEMS USING
A COARSE-GRAINED PARALLEL PROCESSOR

T. Cw”k, J. Partee and J. Patterson

5.1
5.2

5.3

5.4

5.5

introduction
Electromagnetic Modeling And Computational
Performance
a. Parallel Architecture and the JPL Mark IIIfp Parallel Processor
b. Problem Decomposition, Load Balance and Communication
c. Gauging Performance
Parallelization for Small Electromagnetic Simulations

.a. Parallelization of a Small MoM Simulation
b. Parallelization of Iterative Based Simulations
Parallelization for Large Electromagnetic Simulations
a. Parallelization of MoM Code Components:Load Balance and

Communication
b. Parallel Performance ,– Scaled Problem Size
c. Parallel Performance – Fixed Problem Size
d. Sub-Cube Parallelization
Discussion

Acknowledgements
References

5.1 I n t r o d u c t i o n

The development of numerical techniques to model general elec-
tromagnetic systems has paralleled the advancement of comput ational
performance. Whether the electromagnetic system is a radiating one
such as a large multi-element antenna, a scattering object such as an
airplane, or a waveguiding region such as a multi-component milli-

– 148 –

5.1 Introduction 149

~eter-waveguide, the current emphasis in computational electromag-
n’eti$s is towards modeling general, complex, inhomogencous geome-

tries. In addition, there is a continuing emphasis in modeling electri-
cally large objects which may be many wavelengths in size, but bccausc
of a non-smooth geometry, do not allow the reliable use of asymptotic
techniques.

Complementary to the development of numerical techniques is the
advancement of supercomputer performance machines. Since the 1940’s
the peak rate of floating point operations per second (FLO1’S) has
increased, on average, by a factor of 10 every seven years. Pcrformancc
gains are expected to continue, but at an increasing cost due to the
physical limitations inherent in sequential computing. This limitation is
based on the minimum machine cycle time physically realizable and the
minimum time necessary to move data to and from memory from the
various functional units in the computer [1]. State- of-the-art machines
currently have clock times in the 4 to 9 ns range and future systems
are expected to operate at 1 ns. It has become apparent though, that
performance increases due to semiconductor technology are reaching a
point of diminishing returns.

These physical limitations combined with the continued develop
merit of low-cost but relatively powerful microprocessors have moti-
vated the development of machines that achieve supercomputer per-
formance at a reduced cost. This is accomplished by combining many
microprocessors in parallel to perform calculations concurrently. Par-
allel processing also offers the opportunity to develop machines which
will surpass existing supercomputer architecture performance and by-
pass the physical limitations inherent in sequential processing. Parallel
processing, of course, is not limited to organizing microprocessors. Cur-
rently, the Cray Y-MP can support 8 processors and the next genera-
tion Cray machines will allow a maximum of 16 processors. This chap
ter will only consider the organization of microprocessors into parallel
architectures.

Since parallel architectures present an organization of processors
and therefore calculations that is different from traditional sequential
architectures, it has become necessary to explore different clmses of
problems and assess their solutions on parallel machines. Parallel ar-
chitectures have been studied from the view of machine taxonomy [2,3],
machine and algorithm performance [1,4 ,5], and user experience over a
broad range of problem classes [6-9]. This paper specifically examines

1505. Interal Equation Solutions to Radiation and Scattering Problems

s$utions of electromagnetic integral equations on parallel processors.
Initially, electromagnetic modeling and machine performance are dis-
cussed. Next, the parallelization and performance of electromagnetic
calculations are examined in detail on a specific machine architecture.
This is followed by a discussion of the experience gained.

5.2 Electromagnetic Modeling and Computer
Performance

The interplay between a physical model and its numerical simu-
lation begins when the mathematical relations describing the physical
system are discretized. The electrical size of a problem that can be
simulated (in a given amount of time, to a given degree of numerical
accuracy) depends on the available machine memory and speed. Gener-
ally, a direct relationship exists between the electrical problem size and
the amount of machine memory necessary to complete the simulation.

. This relationship depends on the rate at which an unknown quantity
is sampled and the method used to solve the resulting system of equa-
tions. For direct matrix solutions to integral equation formulations of
radiation and scattering problems, the required storage is at least IV2
complex numbers, where IV is the number of samples of the unknown
function. More storage is required for other components of the calcu-
lation and code. The time to solve the assembled system of equations
by decomposing the matrix into lower and upper triangular matrices
(LUD decomposition) is directly proportional to iV3 when IV is larger
than a few hundred. This time is typically the dominant component of
a code when the problem is large. Other solution techniques, e.g. those
that rely on iterative methods or those that use out-of-core solutions,
require different amounts of machine storage and time. Because the re-
quirements of machine storage and time can be directly analyzed, the
mapping of a physical problem onto a given machine can be accurately
assessed. 13ased on the known performance of a given machine, it is
then possible to accurately predict the amount of time necessary to
solve a given problem [lO,l 1]. In the following sections, the JPL Mark
HIfp parallel processor and the mapping of calculations onto it will be
discussed.

5.2 Eloctromagnctlc Molding and Computer Pcrformace 151

q Parallel Amhitecture and the Mark IIIfp Parallel Processor=
.-

The continuing development of parallel processing in the research
community has spurred the introduction of commercially available ma-
chines using state-of-the-art processors and software. In general, these
machines can be grouped into categories dependent on the location of
memory relative to the processors and the number of processors to be
used concurrently. Memory can be shared by a number of processors,
or it can be distributed, with smaller amounts of memory attached
directly to a single processor. Machines from Cray and Alliant are cx-
arnples of shared memory processors. Distributed rncmory machines
can be dividwl into those machines that have large numbers of relative
simple processors (16,000 to 128,000) with small amounts of memory
(l-32 ‘KBytes), and those with smaller number of processors (1-1000)
and larger amounts of memory (4–32 MBytes). Machines with a large
number of processors – referred to as fi ne-grained machines – operate
synchronously, i.e., a single instruction is performed simultaneously on
multiple data that has been spread over all processors in USC. Think-
ing Machines and Goodyear build examples of these sing]c instruction,
multiple data (SIMD) computers. Machines with smaller numbers of
processors – referred to as coarse-grained machines – can operate syn-
chronously or asynchronously. Asynchronous operation occurs when
multiple instructions are being performed simultaneously on multiple
data spread over all processors in use. Intel, NCube, and the JPL build
examples of these multiple instruction, multiple data (MIMI)) comput-
ers. This categorization of parallel processing, though somewhat arbi-
trary, can be examined more generally through the concepts of proces-
sor clusters and hierarchical memory [1], Here, clusters of distributed
memory processors can be connected together through a common bank
of shared memory. Processing within clusters is performed simult ane-
ously, sharing data globally through the common memory banks. The
three categories described above can be viewed as clusters in this gen-
eral architecture, though the specific Cedar architecture described in
[1] utilizes a small number (eight) of relatively powerful vector proces-
sors within a cluster,

The parallel machine used in this study is the Mark IIIfp Hyper-
cube. A schematic diagram is shown in Fig. 1. The Mark IIIfp consists
of at most 128 processors connected in a hypcrcubc topology. The num-
ber of processors used is 2d, where d is the dimension of the cube.
(This study uses up to 64 processors; the second 64 arc currently be-

1

1525. Intcral Equation Solutions to Radiation and Scattering Probloms

@g upgraded and are therefore unavailable.) Each processor consists
~f- a- pair of Motorola 68020 CPUS – one each for processing and com-
munication. Floating point calculations can bc performed on either a
Motorola 68882 co-processor or Weitck XL series 64-bit chip set (hence
t hc sufIlx ~p for flouting point). I) ynamic RAM at each processor is 4
MHytes. Also, a number of Winchester disk drives are arranged around
the processor in their own hypercubc topology. These drives allow pro-
cessors to write data to disk for storage, or can be used for out-of-core
routines. The disk drives can operate concurrently and in parallel with
the processors, they are therefore called concurrent input and output
(cIO).

One hypercubc processor, numbered O, is connected to a worksta-
tion that acts as the host processor. The user’s compiled program is
loaded into the hypercube from the host, and all input or output is also
handled from this machine. Since the hypercube memory is distributed
among processors, a message passing system is used to communicate
data. This system, the crystalline operating system (CrOS), consists of
a number of machine-dependent statements that are called from appli-
cation programs and return information about the hypcrcube or allow
the passing of data between processors. When using CrOS for commu-
nication, all nodes run asynchronously but align activity when commu-
nication is required. Further information on the Mark IIIfp hardware
and software can be found in [12-15].

From this short description of parallel architectures, it is evident
that a strategy that uses all processors efilciently to solve problems
must bc developed. The discretimd problem should be broken up so
that it is decomposed evenly into the memory attached to each proces-
sor, calculations should be equally distributed among processors, and
the amount of communication between processors should be minimal.
These are the topics of the next section.

b. Problem Decomposition, Load Balance and Communication

The central consideration in using a parallel processor is to decom-
pose the discretizd problem among processors so that the storage and
computational load are balanced, and the amount of communication is
minimal. When this is not handled properly, machine efficiency is lower
than 10070, where 10070 is the machine performance when all proces-
sors are performing independent calculations and no time is used for
communicant ion. If the problem is decomposed incorrect y, some pro-

5.2 Electromagnetic Molding and Computer Pcrformace

>
. ● CIO Disks

O Hypercube Processor)

●

L
a

MC68020 * ,.

/
/

●

153

Figure 5.1 Schematic of 16 processor JPL Mark III@ Hypercube. This
machine is attached to a hoat workstation.

cessors will work while others stand idle, thereby lowering machine
e~ciency, Similar] y, if calculations are load balanced but processors
must wait to communicate data, the efficiency is lowered. Sections 3
and 4 will outline simple methods of problem decomposition. Indeed,
as shown in [8], most physical problems naturally decompose onto par-
allel processors. Since communicant ion time is a factor that lowers the
eficiency of an algorithm, the ratio of time needed to perform a cal-
culation to that of communicating data between processors should be
maximum. Due to hardware and software advances, the ratio of calcu-

1545. Intcral Equation Solutions to Radiation and Scattering Problems

la$ion to communication time is typically large for the Mark IIIfp as
w~ll -as for other machines. Understanding the effect of the amount of
communication, as well as the overall size of a problem relative to the
hypercube memory in use, is the subject of the next section.

c. Gauging Pcrjormance

Scalability and elTiciency are defined to quantify the parallel per-
formance of a machine, Scalability, also termed spccdup, is the ratio
of time to complete calculations sequentially on a single processor to
that on P processors

s=%
T(P)

The efficiency is then the ratio of scalability to the number of processors

If an algorithm issues no communication calls, and there is no com-
ponent of the calculation that is sequential and therefore redundantly
repeated at each processor, the scalability is equal to the number of

proc.msors F’ and the eflciency is 100%. The scalability, as defined,
must be further clarified if it is to be meaningful since the amount of
storage, i.e., problem size, has not been included in the definition. Two
regimes can be considert+fixed problem size and fixed grain size. The
first, fixed problem size, refers to a problem that is small enough to
fit into one or a few processors and is successively spread over a larger
sized hypcrcubc. The amount of data and calculation in each proces-
sor will decrease and the amount of communication will increase. The
efficiency must therefore successively decrease, reaching a point where
CPU time is communication bound. The second, fixed grain size prob
lcms, refers to a problem which is scaled to fill all the memory of the
machine in use. The amount of data and calculation in each processor
will be constant, and in general, much greater than the required amount
of communication. IMciency will therefore remain high as successively
larger problems are solved. Fixed grain problems exhibit the scalabil-
ity that is a key mot ivator for parallel processing – successive] y larger
problems can be mapped onto successively larger machines without a
large 10ss of efilciency.

As an example of fixed grain and fixed problem performance, an
I,U~ algorithm is considered. This algorithm and its performance will

5.S Parallelization for Small Electromagnetic Simulations 155

b$ examined in more detail in Section 4. Scalability is plotted in Fig. 2
asa. function of 1 to 64 processors; percentage numbers indicate cffl-
ciencies. For a fixed size problem, 339 unknowns was chosen so as to
fit in one processor. It is seen that performance falls off as the size
of the hypercube increases due to a decrease in the ratio of compu-
tation to communication in each processor. For fixed grain problems,
the amount of data in each processor is fixed. This requires a doubling
of the matrix rank (IV) for each doubling of the dimension of the hy -
percube, i.e., N = No- where IV. is the number of unknowns in
the first processor, and P is the number of processors in use. For this
example No is 339. Successively larger rank matrices are decomposed
at the machine efllciencies shown. As further explained in Section 4, a
loss of efficiency is found, decreasing to 74% at 64 processors, due to
required communication overhead in the algorithm. Among algorithms
used in electromagnetic calculations, the 74!10 efficiency has been found .
to be generally at the low end of performance [13-15].

With the concepts of decomposition, load balance and communica-
tion developed, different solutions to scattering and radiation problems
on the Mark 11 Ifp can now be considered.

5.3 Parallelization for Small Electromagnetic
Simulations

The degree to which a code is parallelized on a given concurrent
machine is dependent upon the available memory at each processor.
When the amount of memory necessary to model the physical problem
is less than the single processor memory, and a number of excitations,
geometries, or output parameters must be varied, a particularly effi-
cient and simple means of parallelizing the code is possible. Rather
than distributing the small memory problem over all available proces-
sors and suffering the loss of eficiency noted in the previous section,
each processor can execute the identical code for varying excitations,
geometries or output parameters. Because there is no communication
between processors except to read the input specific to the individual
processor and write the individual processor’s output, essentially 10070
efficiency is found. Changes in existing code are minimal - M little as a
few lines. Because of this simplicity and eficiency of use, this method
has been termed “trivial parallelizat ion,” or “embarrassingly parallel”
by workers in the field.

1565. Intcral Equation Solutions to Radiation and Scattering Problems

PERFORMANCE OF LUD ALGORITHM~

60 , —— ——. . _

4- FIXED GRAIN

5 0 - — 4– FIXED PROBLEM
L

~ 40 .—— — .——. —
z
a
Z 30 ——-—. -

g ‘-
20

85%
—.—. —

3 170

lo- < ——. _—— —_

0 i
o 10 20 30 40 50 60

NUMBER OF PROCESSORS

Figure 5.2 Scalability of LIJD algorithm. Percentage numbers indicate
etilciency.

Depending on the amount of memory at each processor and the
problem size being considered, the method of trivial parallelization can
be extremely useful. The Mark HIfp has 4 MBytes of dynamic RAM
at each processor. This enables the storage of approximately an order
400 complex, double precision matrix. (Dynamic RAM at each proces-
sor must hold the executable code, necessary libraries and all storage
declared in the program.) Equivalently, codes using iterative solvers
which may use less storage to solve larger systems of equations, or
methods other than integral equation techniques such as finite element
or finite difference time domain methods, can be parallelized in this
manner as long as total code memory requirements are less than the
single processor memory.

The method of trivial parallelization is illustrated in Fig. 3. A re-
flection coefllcient is to be calculated over a spectrum of frequencies
Each processor of the hypercube executes the identical code, accepting
as input a different excitation frequency. After calculations are per-
formed in each processor, the reflection coeticient from each processor
is output. The input can be broken up any number of ways. For ex-

5,3 Parallelization for

~

Small Electromagnetic Simulations

[[l, fz, f3, ”””, f~]

157

ir
Figure 5,3 Illustration of trivial parallclization for calculation of rcfloc-
tion cocfllckmt.

ample, using a 128 processor machine, a problem can be studied for
4 different geometries at each of 32 frequencies. Similarly, for a code
which sequentially executes for varying output parameters, such as a
physjcal optjcs calculation, 128 different field observation points can be
calculated concurrently. In the following sections, results of two differ-
ent codes which have been parallelized using this method arc presented.

a, Parallelizaiion of a Small MoM Simulation

The PATCIi[16] method of moments code, a discretization of the
electric field integral equation (EFIE) for conducting objects of arbi-
trary shape, is the first example of trivial parallelization considered,
An object is modeled by triangular patches which conform to the sur-
face of the object. Currents on the object are similarly modeled by
pairs of the subdomain triangular patches, a technique that results jn
a current representation free of line or pojnt charges. A detailed devel-
opment of the numerical techniques used in the code are found in [17],
and the version of the code used in this study is described in [16]. The
code models both scattering and radiating objects.

Solid modeling of the physical object is accomplished using a mesh
generator which tessellates the surface into the subdomain triangular
patches. Additional input information about the excitation field, sym-

1585. Intcral Equation Solutions to Radiation and Scattering Problems

~try planes, loading, etc., and output parameter calculations such as
near -or far-fields (radar cross sections), equivalent circuits, etc., are
grouped into an input file to be used with PATCH. After execution,
an output file for the given input set is generated.

Trivial parallclization proceeds by loading the executable code into
each processor of the hypcrcubc. In this example, the RCS of a square
plate is to be calculated for a number of frequencies. The only Fortran
coding necessary to pick off the input frequency specific to the individ-
ual processor the code resides in, and communicate the output RCS
calculation to the host processor, is as follows:

Program PATCH

C DECLARATIONS SPECIFIC TO IIYPERCIJBE CODE
integer env(7), node, nprocs
open(5, file = ‘input’)
open(6, file = ‘output’)

C GET HYPERCU13E ENVIRONMENT
call kparam(env)
node = env(2)
nprocs = env(3)

C READ FREQUENCIES IN SINGI,E MODE AND PICK OFF ONE
NEEDED
call kfsingl(5)
do 5 ifreq = O,nprocs -1
read (5,*) freqin
if(ifreq .eq. node) freq = freqin

5 continue

C PATCH CODE

C WRITE OUTPUT IN MULTIPLE MODE
call kfmulti(6)
write(6,*) node, freq, rcs
stop
end

These lines are the additions necessary to complete the calculations

5.3 Parallclization for Small Electromagnetic Simulation 159

c~currently, Subroutine kparam is the Mark IHfp IIypercube specific
routine that returns the machine environment in array env. This in-
cludes the individual processor number the code resides in (node), and
the total number of processors in use (nprocs). The input file, input,
contains all necessary input including the set of frequencies. This file
is set to ‘single mode’ by cal~ k\s1n91(5), which causes all processors to
read input simultaneously. The individual frequency for the processor
in usc is then picked off, and calculations of current on the plate and
RCS arc performed concurrently in each processor. Results arc written
to file output, which has been set to ‘multiple mode’ by call k&mltz(6).
In this mode, the processor number, frequency, and RCS are written to
output, in sequence by processor number; i .c., file output will contain
nprocs lines, each with these three different output variables. If more
calculations arc needed in each processor, more frequencies can be read
and the calculations completed sequentially for the frequencies within
each processor.

The results of these calculations are shown in Figs. 4a and 4b.
Scattering by a square plate modeled by 408 unknowns is considered.
A plane wave is incident normally on the plate and the backscatter
RCS is calculated for plate sizes a, from 0.1A to 1.O~. This range is

divided into 64 frequencies for usc in 1 to 64 processors of the Mark
IIIfp ~~ypercube. The RCS calculation is shown in Figs. 4a and per-
formance results for both the Mark IIIfp and the Cray X-MP/l81 in
Figs. 4b. Measurements in Fig. 4a are from [17]. Optimized Cray.
library routines CGECO and CGESI. for the LU decomposition and
backward/forward substitutions, respectively, were linked to the Cray
version of PATCH. No further optimization was attempted. The hy-
pcrcubc version used routines LUDCMP and L UBKSB [18] modified
for complex matrices. As in the Cray version, no further optimization
was attempted. Performance of the hypercube version of PA TCH shows
constant CPU time (8. 1 minutes) over the entire range of calculations.
Because of the minimal overhead in communicating the RCS values
to the host processor, as expected, this curve is flat over all sizes of
the hypercube. Because the Cray version executes sequentially, looping
over all frequencies after reading the input, the CPU time ncccssary for
solution constantly increases. The Mark 11 Ifp requires ICSS CPU time
to complete these calculations, compared to the Cray, when more than

1 9.5ns clock, UNICOS 5.1 operating system, CFT77 3,0 Fortran
cimpiler,SN 320 (JPL-CRA Y)

1605. Interal Equation Solutions to Radiation and Scattering Problems

1@ processors were used.

b. Parallelization of Iterative Based Simulations

In the previous MoM example, the assembled matrix was factored
using a Gaussian decomposition algorithm that required a fixed num-
ber of operations dependent on the rank of the matrix. Because the
matrix in all processors had the same rank, the CPU time necessary
to complete the calculations was constant over all processors, In the
following example of trivial parallelization, an iterative solution is used
- the conjugate gradient algorithm – that requires differing amounts of
computation in each processor. The amount of time necessary to com-
plete the calculations will depend on the number of iterations needed
to converge to a solution in the individual processor.

The problem considered is that of calculating the reflection and
transmission coefficients of a frequency selective screen (FSS) consist-
ing of a tw~dimcnsional array of conducting patches on a dielectric
substrate. When modeling this structure, the EFIE specific to the in-
finite array is constructed. This equation is solved using the conju-
gate gradient iterative method, yielding the discretized currents on

- the metal patches. Reflection and transmission cocfllcients of the FSS
are calculated directly from this current. A detailed description of the
formulation and solution method is found in [19,20].

The specific FSS geometry considered is a rectangular square patch
array of period 1.0 cm in each dimension, The square patch has dimen-
sion 0.5 cm on a side, and resides on a 0.3 cm dielectric substrate of
relative dielectric constant 2.2. Calculations were completed for four
angles of incidence in O (0°, 15°,30°, 45°), at each of 16 frequencies
(14 -29 GHz in 1 GHz increments), for a total of 64 calculations. Half
of the reflection coefficients calculated are shown in Fig. 5. The per-
formance of these calculations on the Mark HIfp and Cray X-MP/18
is shown in Fig. 6a for a number of excitations increasing from 1 to
64. Because this code is heavily dependent on a fast Fourier transform
algorithm, the Cray library routine CFFT was linked to the code and
used. The CPU time needed by the Mark IHfp to complete the cal-
culations is not constant, as in the previous example, but increases
with the number of excitations and then remains constant after 16
excitations. This time dependence is clearly seen in Fig. 6b, which is
a plot of the CPU time for each of the 64 processors, and illustrates
a property specific to trivial parallclization. Since a processor of the

5.3 Parallelization for Small Elcctromagnctic Simulations

>
MONOSTATIC RCS: SQUARE PLATE OF SIDE a- -al

‘i

lo-—

0

m
: .10 — _

‘<
; .20 ——

-30

-40
00

—— — ____ ___ _____

.—

MEASURED

7

0.2 0.3 0.4 0.5 0.6 0.7 0.8 Og

161

20

10

0

.10

.20

30

40

alk
(a)

PERFORMANCE OF PATCH: TRIVIAL PARALLELIZATION
- 25

.-25

20-— + MARKIIIIP HYPERCUBE

~

E 15

i!i
i=
= lo-

?3

5
— – - 5

0+ T 4

1 2 4
0

8 16 32 64
NUMBER OF FREQUENCIES

(b)

Figure 5.4 Trivial parallelization r~ults. (a) RCSofaquarcplatc. (b)
Pcrformanco of MarK IIIfp and Cray X-MP/18.

1625. Intez-al Equation Solutions to Radiation and Scattering Problems

REFLECTION COEFFICIENT AT O AND 45°

1
0.9
0.8
0.7
0.6

ii 0.5
0.4
0.3
0.2
0.1

‘o
10 15 20 25

FREQUENCY (GHz)

Figure 5.5 Results of FSS calculations over 64 processors. Only half of
the calculations are shown.

hypcrcube is unavailable for further computations once its calculations
are completed and other processors are in USC, the times in Fig. 6a are
the maximum times needed for the calculations in each of the seven
hypcrcube sizes (1 ,2,4,8,16,32,64 processors). The maximum CPU time
(node 12) corresponds to the excitation at 16 GHz, O = 45°, which
is at a resonance of the screen, and which causes slow convergence of
the conjugate gradient algorithm. This time is therefore the maximum
CPU time when more than 12 nodes are in USC. Any other resonant
points will also require about this amount of CPU time for conver-
gence since the algorithm is set to terminate after a fixed maximum
number of iterations. Therefore, the maximum CPU time needed by
the machine will be close to the 48 seconds shown, whereas the CPU
time needed to complete the calculations using the Cray will continue
to increase. Fig. 6b also shows a general loss of efficiency due to some
processors standing idle while others are completing calculations. ‘This
necessitates M processors to complete the calculations in ~CSS time than
the Cray X-MP/18 for this code.

5.4 Para l le l iza t ion for Large
Sinlulations

Elec t romagnet ic

:

5.4 Parallclization for Large Eloctromagnctic Simulations

>

Performance oF FSS cALcuL.ATlON: TRIvIAL pARALI-EU2AW0N

163

60
I I

+ MARK Illfp HYPERCUBE
5 0 - - -

+ CRAYX-MP118
1

~40- - – - — -—- -—––— ——.——— .— _ 4 0
(n

u
~ 3 0 - -- --–—— --—---- -30

>

/
—-— - 2 0

—- -– -10

0+ I 1 t-o
2 4 6 16 32 64

NUMBER OF EXCITATIONS

(a)

TIME AT EACH HYPERCUBE PROCESSOR

HYPERCUBE PROCESSOR
(b)

Figure 5.6 Results of trivial parallclization of FSS calculations. (a)
Performance roaulta of Mark IIIfp and Cray X-MP/18. (b) Mark IIIfp
individual processor times.

1645. Interal Equation Solutions to Radiation and Scattering Problems

~ The previous section contained examples of a simple and power-
ful means to parallelize electromagnetic calculations on coarse-grained
machines. Problems of load balance and communication were implic-
itly solved by loading an identical copy of the sequential code into each
processor and performing independent calculations at each node. The
first example, a Mo?vl calculation, exhibited complete load balance of
computation and data over all processors. The second example, cal-
culations using an iterative solver, showed that even though data was
distributed evenly over all processors, the amount of computation in
each processor varied. Both examples exhibited virtually zero commu-
nication ove~head. When electrical] y large problems are to be solved,
the method of “trivial parallelization” cannot be used and the issues of
load balance and communication overhead must be addressed directly.
This is the subject of the following sections.

a. Parallelization of MoM Code Components: Load Balance and
Communication

The PATCH code, trivially parallelized in Section 3a, is now used
for modeling electrically large objects. The central issue involved in
the parallel ization of PATCH (as for any MoM code) so that it runs
efllciently on a coarse-grained parallel processor, is the decomposition
of the impedance matrix. This matrix, which is now too large to fit
into a single processor’s memory, must be decomposed into parts that
reside in each node. The decomposition should maintain a balance
of the storage of matrix elements among processors, and equalize the
amount of computation performcxl by each processor when the matrix
equation is solved. Indeed, the decomposition of the matrix is directly
linked to the concurrent solver used. For a direct LU factorization with
partial pivoting used for numerical stability, the matrix generally can
be decomposed in three ways. First, decomposition by rows, where a
number of rows of the matrix will reside in a processor; second, de-
composition by columns, where a number of columns of the matrix
reside in a processor; and third, block decomposition, where a block of
the matrix resides in a processor. It is possible to implement a pivot-
ing strategy in each decomposition – pivoting by rows or columns in
each of the first two decompositions, and pivoting within blocks in the
third. These algorithms, as well as others and performance tradeoffs,
can be found in [21-23]. In the parallel implementation of PATCH on
the Mark IHfp, decomposition by rows with row pivoting is used. Sim-

5.4 Parallelization for Large Electromagnetic Simulations 165

il~rly, decomposition by columns with column pivoting was performed
on- an earlier version of PATCH and is outlined in [24]. This study
was completed using the Intel iPSC hypercube on up to 32 nodes and
reached conclusions which are similar to those in this study.

Once the method of matrix decomposition and the solver have been
chosen, parallelization of the code can proceed. PA TG}{ is divided into
the standard MoM code components: discretization of the geometry
into induced current basis functions, matrix fill, matrix factorization
and solution, and finally, flcld computation from the induced currents.
When parallelizing an existing sequential code, as is being done with
PA TCII, it is useful to examine each block to assess code structure
and relative amount of CPU time used. This provides a benchmark
to assess performance and initiate a strategy for parallelization. Fig. 7
is a chart of the time required by the Cray Y-MP/8128 (no multi-
tasking used) to complete calculations for each component of PATCH. “
Four successively larger problems-nearly doubling the matrix size (N)
at size each ste~were considered. As in the code used in 3a, Cray
libraries CGECO and CGESL were used for matrix factorization and
solution. CPU time dependence on the number of unknowns was found
from examining the algorithms used in PA TC}I. The performance was
found from the Cray performance monitor [25] and is shown in Table
1. Although the matrix fill component is proportional to N, 2. and
the factorization proportional to lV3, the fill dominates because of the
poor performance achieved in this portion of the code. It is possible
that this version of PATCH could be optimized for vector operations.
The geometry portion is ultimately proportional to N3, although this
dependence has not yet been found at 2650 unknowns. Therefore, the
iV2 dependence with a large constant is also shown. The times for the
matrix solve component are very small and are thus buried between
the matrix factor and field calculation components of the code on this
chart. Parallelization of these components now proceeds.

GEOMETRY. The geometry portion of PATCH uses a preproces-
sor mesh generator to model the solid body scatterer. Standard pack-
ages are used to generate input for PATCH. The model of the scatterer
is tessellated by the preprocessor into a number of t ri angular patches
defined by nodal points, edges and faces. This information is used by
the geometry routines of the code to create a set of basis functions

2. 6.0 ns clock, UNICOS 5.1 operating system, CFT77 4.0 Fortran
compiler, SN 1030, (REYNOLDS)

1665. Interal Equation Solutions to Rxidiation and Scattering Problems

:
CPU TIME BREAKDOWN OF PATCH BY COMPONENTS

14

12

10

2

CRAY Y-MPJ8128

‘-’---”m––-

--1-”--’- “--- ‘“ ‘“----”-’
.]. .

I

‘ – ” -“---—”—-i-- ‘ - - - - - ” ‘ — -” - - - -

651 1:

UNKNOWNS

_.. — —-, 14

3 2650

—
— “ - - - 1

I ❑ FIELDS ❑ SOLVE ~ FACTOR ❑ FILL ■ GEOMETRY I
Figure 5,7 Breakdown of PATCH by components on Cray Y-MP/8128.
Matrix solve time i.. buried between the matrix factorization and field
calcu-lation components

to model the induced currents. The geometry routines create lists of
connectivity data between triangular faces and edges, the number of
triangles attached to an edge, and surface normals. Disjoint bodies are
also handled in this section, as well as writing the geometry data to
output files.

~om Fig. 7, it was seen that the geometry section requires a small
fraction of the total code time, even at the low MFlops performance
measurixl. Furt herrnore, the amount of data generated is small com-
pared to the impedance matrix that will be generated in the fill com-
ponent of the code. Because of these two reasons, the geometry section
was not parallelized at this time. Each processor will complete iden-
tical calculations and store copies of all geometry data in each node,
Therefore, when the matrix elements are computed, each processor will
have access to all necessary data.

5,4 Parallelization for Large Electromagnetic Simulations

Code
Component

Geometry
Fill

I------Factor
Solve
Fields 3

Unkown Performance
Dependence (MFLOPS)

N 2 + CN3 ---
N 2 7
N 3 212
N 2 220
N 11

167

Table 5.1 PATCH Code Performance

MATRIX FILL. In the matrix fill portion of PATCH, the dis-
cretized EFIE is solved by using the method of moments to form a
linear system of equations whose solution gives the complex amplitude
coefficients of the basis functions. As shown in Fig. 8a, the unknown
coefficients are the amplitudes of the current directed normal to the
edge of a triangle, and the spatial form of the current is represented by
an interpolation function over the two triangular faces attached to that
edge. The interpolation function provides a current representation free
of line or point charges acrms patch boundaries. A triangular patch can
be associated with one or more current basis functions, depending on
whether or not one of its edges corresponds to an edge of the scatterer
where the normal component of the current is zerol or if the patch is
associated with comers or multiple intersecting parts of the scatterer.
The testing procedure used to create elements of the impedance matrix
integrates the field due to a basis function along a piecewise-constant
path from the center of a match triangle to its edge, and onto the
center of the adjacent triangle (Fig. 8b), The line integral is approxi-
mated by calculations performed at the center of each triangular patch
to simplify the procedure, It is noted that since the testing function
is not identical to the current basis function, a Galerkin method does
not result, and no symmetry in the impedance matrix is found, It is
also noted that since the testing procedure approximates a Galerkin
method, the resulting matrix is approximately symmetric.

The current basis functions associated with a triangular patch
correspond to the columns of the impedance matrix and the testing
patches correspond to the rows. Ideally, to simply parallelize the ma-
trix fill portion of the code, the fill algorithm would loop over row and
column indices, performing the integrations necessary to compute ma-

1685. Interal Equation Solutions to Radiation and Scattering problems

Single current tmsis function
attached to unknown 4.

(a)

— TESTING PATIIS

(b)

Figure 5.8 (a) ‘lMang]e basis functions. (b) Testing paths,

trix elements. Since, as noted above, the matrix is to be decomposed
by rows, and the calculations of any one element are independent of
other elements, the algorithm need only proceed if the row being con-
sidered belongs in the processor doing the computations. Otherwise,
the algorithm simply jumps to the next row. In the fill algorithm of
PA TClf, this would directly correspond to looping over all pairs of
edges associated with current and match functions. In order to speed
the sequential execution of the fill algorithm, it was initially recognizd
that calculations performed at the center of a patch are common to the
three edges. It was e~cient to compute the integrals associated with

5.4 Parallclization for Large Electromagnetic Simulations 169

a ~riangular patch and distribute the results over elements of the ma-
trix-associated with the three edges of the patch. The fill algorithm
of PATCH therefore loops over pairs of current and match triangular
patches.

To complete the parallel decomposition, rows of the matrix were
dealt out to processors in “card dealing fashion.” The first row resides
in the first processor, the second in the second, and so on until the
nprocs row resides in the last processor of the hypcrcube (nprocs is the
number of processors in USC). The next row is stored in the first pr~
cessor and the “card dealing” continues. This method allows for nearly
total load balance-any processor will have at most one extra row com-
pared to all other processors. Since the outer loop of the PA TCII fill
algorithm is over current patches associated with columns of the ma-
trix, and the inner loop is over match triangles associated with rows
of the matrix, performing a check within each processor that finds the
row number for the element being calculated was inefilcicnt. This is
because the row number of an element being calculated is found in the
inner loop of the algorithm and duplicate calculations arc made for
various current patches associated with the mat rix columns, or outer
loop. An interchange of loops, moving the match triangle loop calcu-
lations to the outer loop was therefore completed-a relatively simple
process. The check is made in the outer loop, and if any one of its three
edges will contribute to the matrix elements of the row residing in the
processor performing the computation, calculations continue. Other-
wise the algorithm jumps to the next match triangle. An amount of
redundancy develops at this stage since calculations not contributing
to the edges associated with the processor performing calculations are
thrown out. They are being duplicated in the processors where they
are used. This decreases the parallel performance of the fill portion of
the code, as will be shown in the performance section.

MATRIX FACTORIZATION. The factorization algorithm used
in PATCH is a row-ba.wi variant of Gaussian elimination with partial
pivoting. This technique produces upper and lower triangular matrices
that must be solved using both forward and backward substitution.

The elimination subroutine receives the matrix decomposed by
rows. The first task in each elimination step is to determine in which
row (and therefore in which processor) the maximum element of a col-
umn resides (Fig. 9). The maximum is first determined locally within
each processor (each processor has more than one row), then the pr~

1705. Interal Equation Solutions to Radiation and Scattering Problems

c~ors exchange maximum elements to determine which element is
the-global maximum. At each step, the kth processor is responsible
for the elimination row, and, if the designated processor does not have
the row with the maximum element, an exchange is made. This par-
tial pivoting is accomplished via a global broadcast call which sends
a copy of the elimination row to each processor. Broadcast is a Mark
I IIfp specific function that allows one node to communicate data to
all other processors. When broadcast is called, the kt~ processor will
send the specified row and all other processors will receive a copy, This
row is used by each processor to locally complete the remainder of the
elimination step.

MATRIX SOL UTION. Currently, the solution subroutine used to
pcrforxn the backward and forward substitution works over the dis-
tributed factored matrix, but it is essentially a sequential algorithm. .
If a processor is responsible for the substitution step associated with a
specific row, the calculations proceed as normal. When the processor
is finished, it uses a broadcast to communicate the updated right-hand
side to all processors. If a processor is not responsible for a row, it
waits for the global broadcast of the updated right-hand side before
proceeding.

FIELD COMPUTATION. With the major part of computations
and parallclization completed, all that remains is to calculate observa-
tional quantities associated with the scatterer. In PA TCII, these are
mainly the near and far-fields, and associated radar cross section, Field
calculations are completed by performing the forward integration of
the now-known currents and appropriate Green’s function evaluated
at given near or far-field obscrvat ion points. Because of the discret iza-
tion of the current, this integration is a simple sum of the individual
field components due to the current basis functions. The paralleliza-
tion was completed by breaking the sum into parts equally distributed
over all processors. Since the solution vector has been distributed to all
processors, the decomposition is rudimentary~ach processor calculates
field components due to current basis functions associated with trian-
gular patches over njaces/nprocs patches (njaces is the total number
of patches). The hypercube function kcombi is then called to combine
field components from all processors. Rmction kwmbi accepts as input
the field component from a processor and returns the combination of
field components from all processors. How the combination is formed
is defined by a second function, in this case a simple addition.

5.4 Parallclization for Large

>

Electromagnetic Simulations 171

I

i
DETERMINE GLOBAL MAXIMUM

COLUMN ELEMENT

NO

=“EXCHANGE PIVOT ROW
AND kth ROW

&LOCAL
?

+

YES

1
t

BROADCAST PIVOT ROW
TO ALL PROCESSORS

&DONE
?

Figure 5.9 Parallel Gausa factorization algorithm.

b. Parallel Performance - Scaled Problem Size
The performance of the parallelized version of PA TCII is now pre-

sented for a perfectly conducting cube of side s (Fig. 10) which was
scaled proportionally to the number of processors in use. The inci-

1725. Interal Equation Solutions to Radiation and Scattering Problems

z

Ei

,)’ki -Iii

s

YL_J-- — — .
/

/

/

s

x

Figure 5,10 Geometry of perfectly conducting cube scatterer.

dent field directed broadside to the scatterer and both monostatic and
bistatic radar cross sections (RCS) were calculated for various size
cubes. When the bistatic RCS was calculated, the scattered field was
calculated in the E, H and 45° planes for @ from 0° to 180°.

The performance of the parallelized code is initially understood
from an examination of Fig. 11. This chart shows the time for code
components as the problem size is increased. The number of unknowns
nearly doubles at each new data point – each point corresponding to
increasing the dimension of the hypercubc by 2. Therefore, for 339,
651, 1353, and 2650 unknowns, the number of processors used was
1, 4, 16, and 64 respectively. Since storage of the matrix increases as
the square of its rank, the above increase in unknowns and increase
in hypercube size corresponds to a scaling where the number of ma-
trix elements stored in each processor is nearly constant (fixed grain
size), and at the maximum storage allowed. (The matrix rank does
not exactly double at each step because of how the perfectly conduct-
ing cube is discretized by the mesh generator.) 1 t is immediately seen
that the matrix factorization component is now dominant. This differs
from Fig. 7, which showed the matrix fill component dominating when
PATCH is executed on the Cray Y-MI’. The parallelized fill component
is nearly constant as the problem size increases, and the geometry com-

5.4 Parallelization for Large Electromagnetic Simulations 173

‘CPU TIME BREAKDOWN OF PATCH BY COMPONENTS

MARK Illlp Hypercube
6 0 —-----

1

_ . — _

r ‘ - - - T

- - — - - - - . - — - 6 0

F
50 50

~ 40 40
g

g 30 30
F
3
820 20

10 10

0 0
339 - 651 1353 2650

UNKNOWNS

1 4— P R O C E S S O R S — 1 6 64

~ FIELDS ❑ SOLVE ~ FACTOR ~ FILL

7

❑ GEOMETRY

Figure 5.11 Breakdown of PATCH by components on Mark IIIfp. The
number of unknowns scale with the size of the hypercube (fixed grain
problem)

ponent begins to increase with the problem size. Matrix solution and
field calculation components are relatively small. Each component’s
performance is now considered separately.

GEOMETRY. The geometry portion of the code was not paral-
lelized. For small problem sizes, this portion of the code is also small,
but as the problem size increases, the time for geometry processing
grows and will eventually dominate. The next stage of parallelization
would therefore be the decomposition of the geometry processing sec-
tion. Due to the involved structure of this section of code, this would
involve a rewrite. One possible strategy for parallelization is to dis-
tribute’ the discretized input geometry data set over the hypcrcube
and allow each processor to compute the lists of data associated with
its part of the input geometry data set. This information would then
be communicated to all other processors so that each processor would
have all geometry data for use with the matrix fill portion of the code.
Full use of the hypercube could be made, and the communication por-
tion of the algorithm would be a small fraction of the time needed for

1745. lnteral Equation Solutions to Radiation and Scattering Problems

calculations.
““MATRIX FILL. I%om Fig. 11, it is noted that the time to perform

the calculations needed to fill the matrix is nearly constant as the
problem size increases. This is expected since the number of unknowns,
N, scales as the square root of the number of processors P, i.e., N(P) =
o. The time to fill the matrix is CN(P)2 = CN/P where NO is
the nurnbcr of unknowns in a single processor and C is a constant.
The time to fill the matrix for a problem scaling with the size of the
hypcrcubc is therefore ideally

CN:P
TF]~~(P) = ~ = CN~

which is the time necessary to fill the matrix when a single processor
is used. The measured scalability is shown in Fig. 12. As outlined in
Section 2, scalability is the ratio of the time necessary to complete
calculations on a hypothetical single processor to that necessary on P
processors. For the fill calculations, the scalability is

C N2 CN;P P
SFII,L(P) = ~ = ~ = Y

T(P)

where the tilde denotes measured time on P processors relative to that
on one processor. As noted in Fig. 12, performance is not 100% effi-
cient, but is constant with the number of processors. This is due to
the redundancy in computing the matrix elements as cxplafned in the
previous sect ion. When looping over current and match triangles in
each processor, redundant calculations were performed and excess in-
formation discarded. Ideally, a single integration would be performed,
and, the worst case would involve three integrations. from Fig. 12, it is
calculated that the redundancy factor is 2.5, meaning that on average
over the machine, 2.5 matrix element calculations are performed and
discarded for each one kept. This factor will bc constant on any size
machine larger than several processors and is solely dependent on the
nature of the fill algorithm. The elimination of this redundancy would
most easily be made along with the parallelization of the geometry
sect ion of PATCH. Therefore, the strategy out] ined in the geometry
section above for parallelizing that portion of the code would be aug-
mented to mate with a parallel fill algorithm that has no redundant
calculations.

5.4 Parallelization for Large Electromagnetic Simulations 175

MATRIX FILL PERFORMANCE
PROBLEM SIZE SCALES WITH HYPERCUBE

60 , r

LI -m– 100%

50 1 V!J-’”-o– MEASURED —---- ––— -

Lu r———t---r’t--t-*-’t-L 10

0 10 20 30 40 50 60
NUMBER OF PROCESORS

Fjgure 5.12 Performance of matrix fill portion of code.

‘Achieved MFLOPS performance is also marked in Fig. 12. The
number of operations in this portion of the code was found from the
Cray Y-MP performance monitor. A single processor performed at ap-
proximately 0.55 MFLOPS. Achieved MFLOPS refers to actual ma-
chine performance, i ,e,, total time to complete the calculations, includ-
ing any hypercube communicant ion overhead.

MATRIX FACTORIZATION. From Fig. 11, it is noted that the
time to factor the double precision, complex, non-symmetric matrix
into lower and upper triangular matrices, partial pivoting included, in-
creases with problem size. Following reasoning similar to the matrix fill
calculations above, the time to factor the matrix is since the algorithm
scales as lV3. Spreading this calculation over P processors gives

which increases with the square root of the number of processors. Mea-
sured scalability is shown in Fig. 13 and is found from the relationship

C N3 CN;Pfi P@
SFACTOR(P) – T(p) – T(p)— — — =P

T(P)

17(3 5. Intcral Equation Solutions to Radiation and Scattering Problems

MATRIX FACTOR PERFORMANCE
PROBLEM SIZE SCALES WITH HYPERCUBE

60 L I 1
+ 100%

50- —
+– MEASURED

> .- 1 /

1
‘“ 30$

25
s

82 0 >

--– 15:
,Oa

5

0
0 10 20 30 40 50 6’()

NUMBER OF PROCESSORS

Figure 5.13 Performance of matrjx factorization portion of code.

where again the tilde denotes normalizing the measured time on P pro-
cessors to that on a single processor. Measured performance is now seen
to depend on the number of processors, decreasing from an ideal 100%
as the problem size increases. The decrease in eflciency is due to the
communication overhead necessary in the process of partial pivoting.
At each step of the factorization, the maximum element in each row
must bc communicated to all other processors and compared. If pivot-
ing is necessary, the matrix row containing the maximum element must
also bc communicated to all processors. This communication therefore
reduces the parallel efficiency of the algorithm. The achieved perfor-
mance shows about 0.75 MF’LOPS when a single processor is used.

MATRIX SOLUTION. Once the matrix is factored into lower and
upper triangular matrices, the process of forward and backward subst i-
tution is performed to complete the solution. Both substitution algo
rithms contain loops where calculations at each stage in one processor
depend on previous calculations in different processors [26]. A straight-
forward parallelization therefore becomes more involved. The parallel
matrix solution algorithm used, essentially rewrites the solution vector
to all processors as the backward and forward substitution progresses.

5.4 Parallelization for Large Electromagnetic Simulations 177

A* seen in Fig. 11, this portion of the code, even at 2650 unknowns, is
still--a small fraction of the total time.

FIELD CALCULATION. After the matrix is solved, the now-
known current vector resides in each processor and secondary calcu-
lations of observable quantities can bc made. RCS of the cube was
calculated in the E, 11, and 45° planes for O from 0° to 180° in
1° increments. The time to complete the calculation scales as N, and
therefore the time over P processors in a scaled problcm is

CNoV@ = CIM7’FIELD(P) = ~, —
D

and is-seen to decrease with the number of processors used.
Though the time to calculate fields decreases as the problem size

increases, becoming an insignificant portion of the code, it is instructive
to examine the scalability of the field calculations. Measured scalability
is shown in Fig. 14 and is found from the relationship

CN
SFIE1,D(P) = — =

CNo@ _ _@
T(P) T(P) T(P)

where again the tilde denotes normalizing the time on P processors to
that on one processor. As in factoring the matrix, a loss of efficiency
is found as the problem size increases. But this loss of efficiency is not
due to an increase of communication overhead, as in the factorization
algorithm, since only a single communicant ion call is needed to combine
individual field calculations from all processors. The loss of efllciency
here is due to the scaling of the problem and the number of operations
needed to compute the portion of the field from each processor. IMcause
the field calculation requires a loop over N current basis functions that
is spread over P processions, and the number of unknowns increases as
@ , the number of calculations in each processor decreases by @ .
The sequential components of the calculation and the communication
overhead are fixed; therefore a loss of efficiency results. On a single
processor, 0.5 MFLOPS was achieved.

c. Parallel Performance – Fixed Problem Size

The previous section examined the performance of MoM calcula-
tions that scaled with the size of the hypcrcube in use. As shown in

1785. Intcral Equation Solutions to Radiation and Scattering Problems

FIELD CALCULATION PERFORMANCE
PROBLEM SIZE SCALES WITH HYPERCUBE

60 I

50- — +– MEASURED

~
m
~ 30

5
u) 20

10

0
0 10 20 30 40 50 60

NUMBER OF PROCESSORS

Figure 5.14 Pcrformanco of flcld calculation portion of code.

Section 2, this produces maximum efficiency and allows the solution of
larger and larger problems as the machine size increases. Ilowcver, if a
fixed size problem is to be solved that does not completely fill the mem-
ory of the hypercube in use, the user would spread the problem over
the maximum size machine and accept a loss of efficiency to minimize
the amount of time necessary to solve the problem. This has been done
for the cases of 339, 651, and 1353 unknowns and is shown in Fig. 15.
The problem was solved on all hypcrcube sizes capable of storing the
matrix and data. The time shown is the total CPU time necessary to
complete the solution. For the smallest problem (N = 339), consider-
able speedup is noted through 16 processors, at which point the total
time is flat for larger hypercubes. Similarly 651 unknowns flattened
out at “32 processors, and 1353 unknowns has yet to reach saturation
at 64 processors. The Cray Y-MP single processor time needed to solve
these problems was 0.30, 0.85, and 3.23 minutes, respectively.

Radar cross section calculations from the paralle}imd PA 7’C}f code
are compared to measurements and shown in Fig. 16. Measurements of
the cube were obtained from [27]. Fig. 16a shows normalized broadside
monostatic RCS calculations as a function of s/A. Gridding was in-

Parallclization for Large Electromagnetic Simulations 179

20 -J-----

,“

1

——

16-—

PATCH PERFORMANCE
FIXED PROBLEM SIZE

~ 20
+ N=339. -18
+ N= 651

– --16
-+— N= 1353 *

Kzrr=l=

o 10 20 30 40 :
3

- 14

--- 12

- l o

. 8

—— -6

— -4

- 2

0
I 60

NUMBER OF PROCESSORS

Figure 5.15 Performance of fixed size problems on the Mark IIIfp.

creased until convergence of the RCS was found, and, calculations were
spread over the 64 processor Mark IIIfp. Fig 16b shows bistatic RCS
in the E-plane for a cube side dimension of 1.5A. Again, the single
calculation was spread over 64 processors.

d. Subcube Parallelization
!llivial parallelization is very useful if the small problem is to be

resolved many times, as in a design situation or if the system response
to multiple frequencies is needed. Naturally, complete parallelization
for large problems introduces scalability, i.e., the ability to solve larger
and larger problems as the hypercube size increases. If a medium sized
problem is to be solved multiple times, then it is possible to apply the
idea of trivial parallelization to subcubes of the machine. The large
hypercube can be divided into subcubes, and the parallel code loaded
into each subcube and executed for different input sets. Since there
is virtually no communicant ion between subcubes, each group of pr~
cessors can be executing at maximum efficiency and the ensemble will
then achieve the minimum total CPU time to complete the solution. As
in the trivial parallelization cases presented previously, the subcubes

1805. Interal Equation Solutions to Radiation and Scattering Problems

BRoADslDE MONOSTATIC RCS OF CUBE
35

s
251 ___ ____ —.. _________ – – _ _~c——.

5- ——

-5-
— PATCH C O D E

● MEASUREMENT

-25
0 0.5 1 2 2.5 :

s ‘;5A

(a)

BISTATIC RCS OF CUBE
E-PLANE. S = 1.5 k

25
,–

15- -

- 0

‘d -5 :
b

v

-15
— P A T C H C O D E ●

MEASUREMENT

-25
0 20 40 60 80 100 120 140 160 180

THETA (deg)

(b)

Figure 5.16 RCS calculations and measurements. (a) Monostatic RCS.
(b) Bistatic RCS.

5.5 Discussion

ci$$ be divided by excitation, geometry, or output parameters.

181

5.5 Discussion

The central issue in using a coarse-graincd machine such as the
Mark “IIIfp hypercube is problem decomposition. For a direct solution
using a MoM technique, this means that the matrix must be decom-
posed among processors to achieve load balance. Since this decomp~
sition is dependent on the matrix solver to be used, the first step in
using the parallel processor was to develop a solver. With the maturity
of parallel processing, solvers have become library routines where on] y
calling arguments need be specified. The MoM matrix is therefore de-
composed among processors according to the solver’s instructions and
computation is begun. Scalability can be high for large problems that
scale with the hypcrcube dimension. If a fixed size problem is to be
solved, performance event ually tapers off due to communicant ion de-
mands.

Alternatively, the method of trivial parallelization can be pow-
erful when the problem size is small and many runs are needed. As
maturing technology allows more memory to be attached to individual
processors, this technique can be used for larger problems.

The motivating factors of concurrent processing - scalability of
problem to processor size, and an increase in performance-to-cost ratio
— continue to be justified. Interestingly, the user community, including
workers engaged in computational elcctromagnetics, have been supply-
ing input to manufacturers of new concurrent machines. It is therefore
to be expected that concurrent processing will be an integral part of
clcctromagnetics in the near future.

1825. Interal Equation Solutions to Radiation and Scattering Problems

Acknowledgements.

The authors wish to gratefully acknowledge the following people
for assistance during the course of this study: William Johnson for
supplying the PA TCfI code, Wilson Pearson for information regard-
ing work on the parallelization of an earlier version of PATCH, and
Marc Cote for the measured cube RCS. A spwial acknowltigment is
extended to Don Wilton for discussions on the formulation and imple-
mentation of the PA TCI] code. The authors also wish to acknowledge
the use of the J PL/Caltech CRAY X-MP/ 18 to perform parts of these
calculations.

The research described in this chapter was carried out at the Jet
Propulsion I,aboratory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Administration.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Kuck, D. J., E. S. Davidson, D, H. Lawrie, and A. H. Sameh,
“Parallel supercomputing today and the Cedar approach,”
Science, 231, 967-974, Feb. 28, 1986.

Seitz, C., ‘The cosmic cube,” Commun. ACM, 28, 22-23, 1985.

Flynn, M., “Some computer organizations and their effectiveness,”
IEEE tin.sactions on Computers, C-21, No. 9, 948-960, Sept.
1972.

Kumar, M., “Measuring parallelism in computation-intensive
scientific/engineering applications,” IEEE 7Yan.sactions on
Computers, C-37, No. 9, 1088-1098, Sept. 1988.

Hillis, W. l)., and G. L. Jr. Steele, ‘Data Parallel Algorithms,”
Communications of the ACM, 29, No. 12, 117&l 183, Dec. 1986.

Fox, G., et al., Solving Problems on Concurrent Processor, Pren-
tice Ilall, New Jersey, 1988.

Fox, G. C., and A. Fley, “Iligh performance parallel supercom-
puting application, hardware, and software issues for a teraflop
computer,” Cah!ech Concurrent Computation Program Paper,

Roferonces 183

<-..

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
.

[21]

[22]

C3P-451C, Nov. 1988.. .
Fox, C. C., ‘1989 - The first year of the parallel supercomputer,”
Calteeh Concurrent Computation Program Paper, C3P–769, June
1980.

Gustafson, J. L., G. R. Montry, and R. E. 13enner, ‘(Development
of parallel methods for a 1024-processor hypercube,” SIAM J. Sci.
Stat. Comput. 9, No. 4, 609-638, July 1988.

Messina, P. , et al., “Benchmarking advanced architecture com-
puters,” Caltech Concurrent Computation Program Paper,
C3P–712, 2-53, June 1989,

Dongarra, J. J., “Performance of various computers using stan-
dard linear equations software in a fortran” environment,” Techni-
cal Memo 23, Math and CS Div., Argonne National Lab, Jan. 29,
1989.

Patterson, J. E. , et al., “Parallel computation applied to elec-
tromagnetic scattering and radiation analysis,” Elcctromagnetics,
10, no. 1-2, 21-39, Jan-June 1990.

Calalo, R. , et al., ‘TIypercube matrix computation task, report
for 1986-88,” JPL Publication 88-31, Aug. 1988.

Calalo, R. , et al., “Hypercube matrix computation task, research
in parallel electromagnetic, Report for 1988–89,” JP1. Publica-
tion, Nov. 1989.

Cwik, T. , et al., “Hypercube Matrix Computation Task, Research
in Parallel Electromagnetic, Report for 1989 -90,” JPL Publica-
tion, in press.

Johnson, W., D. R. Wilton, and R. M, Sharpe, “Modeling scat-
tering from and Radiation by Arbitrary Shaped Objects with the
Electric field integral equation triangular surface patch code,”
@xtrvmagnetics, 10, No 1-2, 41-64, Jan-June 1990.

Rae, S. M., D. R. Wilton, and A. W. Glisson, ‘(Electromagnetic
scat tering by surfaces of arbitrary shape,” IEEE fians. AP-30,
409418, May 1982.

Press, W., et al., Numerical Recipes, The Art of Scientific Com-
puting, Cambridge University Press, Cambridge, 1986.

Cwik, T., and R. Mittra, “scattering from a periodic array of free-
-rig arbitrarily shaped perfectly conducting resistive

. . .

ipate es,” IEEE tins., AP-35, 1226-1234, Nov. 1987.
Cwik, T., and R. Mittra, ‘The cascade connection of planar
periodic surfaces and Iossy dielectric layers to form an arbitrary
periodic screen,” IEEE Tkns., AP-35, 1397-1405, Dec. 1987.
Chu, E,, and A. George, “Gaussian elimination with partial piv-
oting and load balancing on a multiprocessor,” Pamllel Com-
puting, 5, 65-74, 1987.
Geist, G. A., and C. H. Rornine, ““LU factorization algorithms

1.7 References 37

[23]

[24]

[25]

[26]

[27]

on distributed memory multiprocessor architectures,” SZA M J.
Sci. Stat. Comput., 9, No. 4, 639-649, July 1988.
Gallivan, K. A., R. J. Plemmons, and A. H. Sameh, “Parallel
algorithms for dense linear algebra computations,” SIAM Rev.,
32, No. 1, 54-134, Mar. 1990.
Wllton, D., and R. Sharpe, “Solution of scattering problems by
the method of moments on a hypercube,” Technical Report No.
87-14, McDonnell Douglas Corporation, Aug. 1987.
UNICOS Performance Utilities Reference Manual, Cray Re-
search, Publication No. SR-2040, May 1989.
Golub, G., and C. Van Loan, Matrix Computations, Second Edi-
tion, The John Hopkins University Press, Baltimore, 1989.
Cote, M. G., Woodworth, M. B., and Yaghjian, A. D., ‘Scatter-
ing from the perfectly conducting cube,” IEEE Tkms., AP- 36,
1321-1329, Sept. 1988.

.

ADDENDUM

Since the material in this chapter has been written, continued development of
parallel computer systems has led to machine performance that vastly surpasses the results
presented inthe previous sections. Both hardware andsoftware development has evolved
greatly, allowing larger problems toksolvd installer mounfi of time, Developments
in machine hardware and system software have also spurred the evolution of the
computational electromagnetic algorithms presented in this chapter, In this addendum,
updated material will be presented for the solution of large electromagnetic simulations
using the method of moments solution. Specifically, the current LU factorization
component of the integral equation solution presented in Section 5,4 will be outlined.

The matrix decomposition method outlined in Section 5.4 involved spreading the
rows of the matrix among the processors in a ‘card dealing’ fashion, This has evolved into
a decomposition scheme where blocks of the matrix are computed and stored in each
processor. The block decomposition is used so as to produce an extremely efficient LU
factorization algorithm--one that scales nearly uniformly with machine size for scaled
problems. The block decomposition is superior because it exploits matrix-matrix multiplies
in the routine, and introduces a communication scheme that minimizes overhead in the
message passing portion of the algorithm: The matrix-matrix multiply kernel is essential
since it produces the optimum performance when using the vendor supplied basic linear
algebra subroutine (BLAS) libraries. The communication scheme is efficient because
special routines communicate data between processors that have been logically mapped as a
two dimensional mesh [28],

This parallel LU factorization and solution algorithm has been used with the
PATCH code previously described. The code has been run extensively on Intel iPSC
Hypercube and Delta Touchstone systems, The hypercube has upwards of 64 processors,
and the Delta system is an two-dimensional array (16x32) of512 processors. Each
processor has 16 MBytes of RAM attached, Shown in Figure 5,17 is a plot of the time to
factor, and the performance of the block factorization algorithm running on the Touchstone
Delta system. The problem size scales with machine size; data points are shown at 16,64,
128,256 and 512 processors, This corresponds to matrix orders of 3042,5832,8712,
12168 and 16200 unknowns respectively. This plot can be compared to Figure 5,13,
Performance has increased by a factor ~f 278, and problem size has increased by over 6
over the two years separating the computations.

FIGURE 5,17 SUPPLIED CAMERA READY

PLEASE ADD THIS REFERENCE

[28] van de Geijn R,, “Massively parallel LINPACK benchmark on the Intel Touchstone
DELTA and iPSC/860 systems,” TR-91-28, Dept. Comp Sci, U of Texas, 1991.

PLEASE ADD THIS ACKNOWLEDGMENT TO THE END OF THE FIRST
PARAGRAPH IN THE ACKNOWLEDGMENTS SECTION

This research was performed in part using the Intel Touchstone Delta System operated by
Caltech on behalf of the Concurrent Supercomputing Consortium, Access to this facility
was provided by NASA.

SHOSS30Hd 40 klE19WflN
Z 1S 8t7t7 t788 07S 9W Z6~ 871 t79 O

0

z-

X)NVWUO+13d +
v -

9
- .

8 -

01

21
SMOSS330kJd 40 kEMWIN HIIM S31V3S 3ZIS W31gOE!d

NOILVZIH01W4 W078 403C)NVWL103H3d CINV 3Wll

